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Exact results are derived concerning quasiregularity and diffusion of strong chaos on resonances of the
sawtooth map. A chaotic ensemble of well-defined quasiregularity type �the sequence of resonances visited� is
generally a fractal set whose main characteristics, the topological entropy and the Hausdorff dimension, are
calculated exactly, under some conditions, using a symbolic dynamics. The effect of quasiregularity on chaotic
diffusion is characterized by an infinity of diffusion coefficients, each associated with a fractal ensemble
trapped in a periodic set of resonances. In some cases, these coefficients are calculated exactly and it is shown
that rigorous diffusion takes place on the resonances.
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I. INTRODUCTION

Typical Hamiltonian systems exhibit regular and chaotic
motions intricately mixed on all scales of phase space. The
regular-motion components usually have a strong impact on
the chaotic dynamics. In particular, the stickiness of chaotic
orbits to the boundaries of stability islands leads to long-time
correlations in an ensemble of such orbits �1–3�. It is there-
fore not clear yet to precisely what extent chaos, in the pres-
ence of regular motion, is close to a purely random process,
featuring statistical properties such as diffusion. In this paper,
we derive exact results concerning strongly chaotic diffusion
in a Hamiltonian system having no stability islands but
whose dynamics is highly nontrivial and contains unstable
regular-motion components. This is the well-known sawtooth
map �SM� on a cylindrical phase space:

M: pt+1 = pt + Kf�xt�, xt+1 = xt + pt+1 mod�1� , �1�

where p is angular momentum, x is the angle, K is a nonin-
tegrability positive parameter, and f�x� is a sawtooth func-
tion: f�x�=x−1/2 for 0�x�1, f�0�=0, and f�x+1�= f�x�.
The SM is a uniformly hyperbolic and completely chaotic
system. It was apparently first introduced by Rokhlin �4� and
it continued to attract attention until these very days �5–20�.
Nonsmooth systems such as the SM are, in principle, experi-
mentally realizable �21� like the smooth ones. The SM also
describes approximately, or is closely related to, several re-
alistic systems, e.g., the standard map �map �1� with f�x�
=sin�2�x� / �2��� in its strong-chaos �large K� regime and the
stadium �Bunimovich� billiard �17�. The “elliptic” SM, with
−4�K�0, exhibits remarkable phenomena �2,22,23�, such
as “pseudochaos.” Recently �19,20�, the quantized SM was
used to demonstrate the enormous efficiency of quantum
computers in simulating complex quantum dynamics. De-
spite its apparent simplicity, the SM features a very non-
trivial symbolic dynamics and a rich variety of unstable orbit
structures �9–13�. Some of these structures are quite analo-
gous to those exhibited by typical Hamiltonian systems with
a mixed phase space. A prominent example are the rotational
resonances built, as in the case of generic maps �1�, on or-
dered �Poincaré-Birkhoff� periodic orbits �3,26,27�; the reso-
nances are the basic regular-motion components of the SM
and give an exact partition of phase space �11–13� �see a

summary in Sec. II�. Because of this partition, a general cha-
otic orbit must be a sequence of quasiregular segments inside
resonances; this sequence defines the “type” of the orbit
�13,14� �see Sec. III�.

Diffusion in the p direction is characterized by the global
diffusion coefficient D=limt→���pt− p0�2�E / �2t�, where � �E
denotes average over an ensemble E of initial conditions
�x0 , p0� in phase space. For sufficiently small K, D�K� ap-
pears to scale as K2.5, a behavior well reproduced by a Mar-
kov model of transport based on the resonances �11�. This
scaling seems to be generic for discontinuous systems
�17,18�. Several results have been obtained in the case of
integer K �“cat maps”� �8,15,23–25�. In particular, if E is
chosen as the entire torus 0�x , p�1, the value of D in this
case is exactly calculable �8�: D=K2 /24. This value is repro-
duced also by finite ensembles E of periodic orbits of given
period T as D= ��pT− p0�2�E / �2T� �15�.

In Sec. II, we summarize known facts about the rotational
resonances of the SM. We then derive exact results concern-
ing chaotic ensembles having a well-defined quasiregularity
type �Sec. III� and ensembles G trapped in some periodic set
S of resonances in the p direction �Sec. IV�; see also Ref.
�13�. All these ensembles are generally fractal sets whose
main characteristics �topological entropy and Hausdorff di-
mension� are calculated exactly, under some conditions, us-
ing a convenient symbolic dynamics which we introduce.
The ensemble G is also characterized by a diffusion coeffi-
cient DG which is calculated exactly in the case that all the
resonances in S have the same order. We show that in this
case one has a rigorous diffusion of G on S. These exact
results hold for all K larger than some threshold value, i.e.,
they are not limited to specific �e.g., integer� K values. The
coefficients DG characterize the effect of quasiregularity on
chaotic diffusion in much more detail than the single global
coefficient D. A summary and conclusions are presented in
Sec. V.

II. ROTATIONAL RESONANCES IN THE SM

In this section, we briefly summarize known facts about
the SM rotational resonances �see more details in Ref. �12��.
We first recall the important concept of ordered �Poincaré-
Birkhoff� orbits �26,27�. To a sequence of orbit angles xt
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there corresponds its “lifted” sequence x̃t obtained by using
the map �1� with the mod�1� removed. An orbit of �1� is
ordered like a rotation if it possesses the order-preserving �or
monotonicity� property x̃t+a� x̃t�⇔ x̃t+1+a� x̃t�+1 for all in-
tegers a , t , t�. For an ordered periodic orbit �PO� with mini-
mal period n, one has pt+n= pt and xt+n=xt or x̃t+n= x̃t+m,
where m is integer and �m ,n� are coprime. The winding
number �=m /n gives an average value of p for the PO. One
defines a “gap” G as a pair of PO points having neighboring
values of xt; the “principal” gap G0 is the pair of points with
xt closest to x=0 �such as the points L and R in Fig. 1�. The
n gaps of the ordered PO can be shown to be precisely the n
iterates Gt=MtG0 of G0, t=0, . . . ,n−1; also, Gt+1 is sepa-
rated from Gt by �m�−1 gaps. For K=0 �purely rotation
map�, all the orbits are ordered. For K�0 and arbitrary given
rational m /n, the SM has one ordered PO with �=m /n and
G0 symmetrically positioned around the discontinuity line
x=0. Thus, no PO point lies on x=0, so that the PO is fully
hyperbolic. In fact, except of orbits with points on x=0, the
SM is uniformly hyperbolic, i.e., its linearization is a con-
stant 2�2 matrix with eigenvalues 	=1+ �K+�K2+4K� /2
and 	−1. The corresponding “unstable” and “stable” eigen-
vectors are given, respectively, by Eu= �1,1−	−1� and
Es= �1,1−	�, where the first �second� component is in the x
�p� direction.

The �=m /n resonance is then built on the ordered PO
above as follows. Consider in Fig. 1 �for �=1/2� the paral-
lelogram Z�0����=LERF made by connecting the two points
L and R of G0 by segments parallel to Eu and Es. The m /n
resonance is defined as the chain of n “zones” �parallelo-
grams� Z�s����=M−sZ�0����, s=0, . . . ,n−1; each zone lies in
some gap of the PO and Z�0���� is the principal zone of the
resonance. In Fig. 1, we show some examples of resonances

built in the way above. The resonances for all m /n do not
overlap and give an exact partition of phase space �12�.

Clearly, the zone Z�n����=M−nZ�0���� �the region
LGICRHJDL in Fig. 2� lies again in the principal gap. This
zone differs from Z�0���� by two “turnstiles” �the shaded
regions in Fig. 2�, each consisting of two triangular lobes of
equal area touching at one point. By construction, the lobes
inside �outside� Z�0���� form the region exiting �entering� the
resonance in one iteration. As K �and thus 	� is increased, the
size of the turnstiles increases until eventually, when 	n�3
�12�, one lobe of the upper turnstile begins to overlap with
one lobe of the lower turnstile �pI� pB and pJ� pA; see Fig.
3�. Then, the region exiting the resonance to below �above� is

not a triangle but actually the trapezoid V̄0=BAMH

�V̄1=ABNG�. Similarly, the region entering the resonance
from below �from above� is the trapezoid DFNI �CEMJ�.

FIG. 1. SM resonances �=0/1, 1 /3, 1 /2, 2 /3, and 1/1 for K
=0.5. The hyperbolic ordered PO, on which a resonance is built,
consists of the “X” points connecting neighboring zones of the reso-
nance. The principal zone �such as the zone LERF in the principal
gap LR for �=1/2� is always symmetrically positioned around x

=0. The vector LE� �ER�� is parallel to the unstable �stable� eigen-
vector Eu �Es�.

FIG. 2. Principal zone �solid lines� of resonance �=1/2 for
K=0.05 with its upper and lower turnstiles �shaded regions�.

FIG. 3. Principal zone �solid lines� of resonance �=1/2 for
K=0.65 with its generalized turnstiles �shaded regions�; see text for
more details.

O. BARASH AND I. DANA PHYSICAL REVIEW E 74, 056202 �2006�

056202-2



Thus, for 	n�3, one has to define “generalized” turnstiles:
the lower �upper� generalized turnstile consists of the lobes
BAMH and DFNI �the lobes ABNG and CEMJ�. The paral-
lelograms V0=MERH and V1=LGNF are the nonescaping
regions of LERF under one iteration of Mn �28�.

Given two resonances �=m /n and ��=m� /n�, the enter-
ing lobe of a turnstile of � may overlap with the exiting lobe
of a turnstile of �� and vice versa. Figure 4 shows an ex-
ample of these overlaps �shaded� for ���� and generalized
turnstiles. The overlaps give the regions transferred from one
resonance to another in one iteration. It turns out that there
are only five distinct cases of turnstile overlap �TO� �12�,
depending on the value of K. The most important case for the
purposes of this paper is that of a TO whose shape is a
parallelogram, illustrated in Fig. 4. Such a shape can arise
only for generalized turnstiles when pI� pB�, or AI
AB�.
The latter condition can be written more explicitly using
AI=K /2 �12� and AB�= �p�− p���+ �AB+A�B�� /2, where p�

and p�� denote the p coordinates of the centers of the prin-
cipal zones Z�0���� and Z�0�����; the “height” AB of � is
given by AB=K / �	n−1� �12�. Then, AI
AB� is equivalent
to

K 
 2�p� − p��� +
K

	n − 1
+

K

	n� − 1
. �2�

III. ENSEMBLES WITH WELL-DEFINED
QUASIREGULARITY TYPE

The exact resonance partition of phase space in the SM
implies that a general orbit �except of a zero-measure set of
orbits, e.g., cantori� must have all its points within reso-
nances and must therefore perform a quasiregular motion as
follows. Suppose that the initial point of the orbit lies in zone
Z�s����=M−sZ�0���� of resonance � for some s=0, . . . ,n−1.
Then, after s iterations, it will lie in the principal zone

Z�0����. If it does not lie in an exiting turnstile lobe, it will
visit again the n zones of �, returning to Z�0���� after n
iterations. If, on the other hand, it lies in an exiting turnstile
lobe, more precisely in the TO of � with resonance
��=m� /n�, it will escape to zone Z�n�−1����� and it will per-
form at least a finite number of rotations �of n� iterations
each� in �� before escaping to another resonance. Thus, a
general orbit is a sequence of quasiregular segments, each
lying in some resonance �r=mr /nr, −��r��, and having a
length of qrnr iterations, where qr is the number of rotations
performed in �r. We denote this sequence by �= . . . , ��r�qr

,
��r+1�qr+1

, . . ., and we say that the orbit is of type �.
The chaotic region can be well approximated by the en-

semble of all POs with sufficiently large period. A general
PO of �1� is defined by pt+T= pt+ P and xt+T=xt, where the
period T is the smallest positive integer such that the last
equations are satisfied for some integer P. If P�0, the PO is
an accelerator mode. The type � of a PO must have the form
�= . . . ,��−P��, ��0�, ��P��, ��2P�� , . . .., where ��uP�� �u
and P� are integers and P� is related to P; see below� is a
basic �primitive� “block” involving a finite number R of reso-
nances, ��uP��= ��1+uP��q1

, . . ., ��R+uP��qR
. The R reso-

nances �1 , . . . ,�R may not be all different. Generally, the pe-
riodic cycle of the PO is completed only after visiting the
block � more than one time, say l times. Then, T= lT�, where
T�=	r=1

R qrnr, and P= lP�. We denote by U�,l and N�� , l�, re-
spectively, the ensemble and number of all POs of type � and
periods T�= l�T�, where l� divides l �including l�= l�. For a
completely chaotic ensemble such as U�,l, one expects an
exponential increase of N�� , l� with l. We then associate with
U�=�lU�,l the topological entropy

h� = lim
l→�

ln�N��,l��
lT�

. �3�

As l→� or T�→�, U�,l approaches an ensemble C� of ape-
riodic chaotic orbits.

We now study the orbits of type � involving a finite num-
ber R of basic resonances, as above, under the condition that
any two consecutively visited resonances, �r and �r+1 ��R+1


�1+ P��, have a parallelogram TO, i.e., relation �2� is sat-
isfied for �=�r and ��=�r+1. We then show below that an
orbit of type � is uniquely determined by a bi-infinite binary
symbol sequence �c��= . . . ,ci−1, ci , . . . �ci=0,1� whose gen-
eral structure is as follows �using the notation C�=	r=1

R qr�: If
i=qr mod �C�� �i.e., i=qr+gC� for some r=1, . . . ,R and for
some integer g�, then ci is fixed by �, namely ci=0 for
�r+1��r and ci=1 for �r+1��r; otherwise �i�qr mod �C���,
ci is arbitrary, i.e., it assumes the values ci=0,1 indepen-
dently. In particular, for a PO in U�,l, �c�� is periodic with
period lC�: lR symbols are fixed by � as above and lQ�

symbols are independent, where Q�
C�−R=	r=1
R qr−R.

Thus, one has N�� , l�=2lQ�, so that from �3� we get

h� =
Q� ln�2�

T�

. �4�

If Q�=0, i.e., qr=1 for all r=1, . . . ,R, h�=0 in �4�. In fact, in
this case there exists only one orbit of type �, a PO with
period T=T�.

FIG. 4. Resonances �=1/2 and ��=1/3 �solid lines� for
K=0.65 with their generalized turnstiles and the TOs �shaded re-
gions�; see text for more details.
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We also show below that the initial conditions for all the
orbits of type � form a horseshoe H�, i.e., an invariant fractal

set whose Hausdorff dimension D̄� is given by

D̄� =
2Q� ln�2�
T� ln�	�

=
2h�

ln�	�
. �5�

To show all this, we first note that initial conditions for all
orbits of type � can be found in one TO. We denote the TO
between �r and �r+1 ��R+1
�1+ P�� by Or,r+1. Without loss
of generality, we assume that P�=0 �29� and we start from
the TO OR,1, which is mapped inside Z�0���1� under Mn1. For
the sake of illustration, we assume that �1 and �R are repre-
sented, respectively, by the upper and lower resonance in
Fig. 4; then, OR,1 is the lower TO in Fig. 4, crossing the left
part of Z�0���R�. For simplicity, we change temporarily the
notation, �1, n1→�, n. The zone Z�0����=LERF is shown in
more detail in Fig. 3. It is clear from the end of Sec. II that
the parallelogram LGIQ is mapped inside LERF under Mn

and its area is less than half of that of LERF. Using also the
facts that Eu �Es� expands �contracts� by a factor of 	n under
Mn and that LG=FN=	−nLE �12�, we see that LGIQ is ac-
tually mapped under Mn into the parallelogram LEI�Q� �see
Fig. 5�a��. Thus, the lower TO in Fig. 4 is mapped under Mn

into the dashed “horizontal” �h� strip parallel to LE in Fig.
5�a�. We denote this strip by H and we define, for c=0,1, the

regions Hc=H�Vc �shaded in Fig. 5�a�� and H̄c=H� V̄c.
Then, for c=0,1, MnHc are clearly the two dashed h strips
parallel to LE in Fig. 5�b�; MnH1 is closer to LE than H
while MnH0 lies in the lower half of LERF, since 	n�3. In
Fig. 5�b� we indicate, for c ,c�=0,1, the regions

Hc,c�= �MnHc��Vc� �shaded� and H̄c,c�= �MnHc�� V̄c�. In
general, denoting an arbitrary binary symbol sequence seg-
ment of length q by �c�q=c1 , . . . ,cq, one generates 2q h strips
H�c�q

from 2q−1 strips H�c�q−1
by H�c�q

= �MnH�c�q−1
��Vcq

,

where �c�q and �c�q−1 coincide in the first q−1 symbols;

similarly, H̄�c�q
= �MnH�c�q−1

�� V̄cq
. The width of H�c�q

or H̄�c�q
is 	−nq that of the TO.

For q=q1, only the part of the strips H̄�c�q1
lying in the TO

O1,2, H̄�c�q1

�1,2�= H̄�c�q1
�O1,2, will escape to the next resonance

�2. Clearly, in H̄�c�q1

�1,2� one must have cq1
=0 for �2��1 �O1,2

crosses V̄0, as in Fig. 4� and cq1
=1 for �2��1 �O1,2 crosses

V̄1�. Thus, the number of strips H̄�c�q1

�1,2� is 2q1−1 �see Fig. 6�a��.
It easy to see from the construction above that
V�c�q1

�1,2�
M−n1q1H̄�c�q1

�1,2� are 2q1−1 “vertical” �v� strips lying in

OR,1; see Fig. 6�b�. These strips form precisely the region of
OR,1 which performs q1 rotations in �1 and lies in O1,2 at the
end of the q1th rotation; in more detail, for s=1, . . . ,q1−1,

Mn1sV�c�q1

�1,2� lies in the strip H�c�s
in �1, where �c�q1

and �c�s

coincide in the first s symbols.
All the process above, which started from OR,1, can be

repeated starting from the set of 2q1−1 h strips H̄�c�q1

�1,2� in O1,2.

FIG. 5. Schematic illustration of the principal zone �solid lines� of a resonance, showing several regions defined in the text �see more

details there�: �a� the regions H0 and H1 �shaded� and the regions H̄0 and H̄1, separated by the discontinuity line �the vertical dashed line�;
the union of these four regions is the h strip H. �b� The regions Hc,c� �shaded� and H̄c,c� for c ,c�=0,1.

FIG. 6. Schematic illustration, for q1=2, of �a� the h strips H̄�c�q1

�1,2�

in O1,2; �b� the v strips V�c�q1

�1,2� in OR,1 �see text for more details�. In

this illustration, O1,2 and OR,1 correspond to the upper and lower
TO, respectively, in Fig. 4.
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At the end of the process, each of these strips will split into
2q2−1 substrips, yielding 2q1+q2−2 h strips in O2,3; similarly,
one obtains 2q1+q2+q3−3 h strips in O3,4, and, finally, 2Q� h
strips back in OR,1. If the process is repeated gR times fol-
lowing g consecutive blocks � of �, one gets 2gQ� h strips in
OR,1. Each strip is naturally denoted by H̄�c��,g

, where �c��,g is
the sequence of length gC� obtained by just combining
the gR symbol sequences for the segments visited:
�c��,g= �c�q1

, �c�q2
, . . . , �c�qgR

; here we define qr�=qr for
r�=r+g�R, with r=1, . . . ,R and g�=0, . . . ,g−1. The last
symbol in �c�qr�

is fixed by �: cqr�
=0 for �r+1��r and

cqr�
=1 for �r+1��r. After a careful inspection, it is not hard

to verify that V�c��,g

M−gT�H̄�c��,g

�T�=	r=1
R qrnr� is a v strip

lying in OR,1, as in Fig. 6�b� �30�.
Consider now the intersection I�c , c���,g


 H̄�c��,g
�V�c���,g

,
where �c��,g and �c���,g are any two sequence segments of
length gC� defined as above. Denoting gC� by y for simplic-
ity, we write the combination of the two segments as
�c��,±g=c−y+1 , . . . ,c0 ,c1� , . . . ,cy�, where the y symbols of �c��,g
are labeled by i=−y+1, . . . ,0. Clearly, I�c , c���,g

contains the
initial conditions �x0 , p0� for all the orbits of type � satisfying
the following property in the time interval −gT�� t�gT�:
When the orbit point �xt , pt� visits the principal zone of a

resonance, it lies in an H or H̄ strip labeled by the symbol
sequence c1� , . . . ,ci� �i�y� for t�0 and by the symbol se-
quence c−y+1 , . . . ,ci �i�0� for t�0; the relation between t
and i can be easily written in terms of the type. The last
symbol �ci� in the above sequences indicates whether �xt , pt�
is found on the right �ci=0� or on the left �ci=1� of x=0. The
bi-infinite sequence �c��=limg→��c��,±g is a symbolic repre-
sentation of the orbit of �x0 , p0� both forward and backward

in time. Since the width of both H̄�c��,g
and V�c���,g

is propor-
tional to 	−gT�, I�c , c���,g

is a small “box” of area proportional

to 	−2gT�. Thus, as g→�, H̄�c��,g
and V�c���,g

reduce to two
line segments intersecting precisely at �x0 , p0�. In this way,
�c�� determines uniquely an orbit of type �. A PO in U�,l is, of
course, represented by a sequence �c�� periodic with period
lC�. For Q�=0, all the symbols in �c�� are obviously fixed by
� as described above; then, �c�� must be periodic with period
R=C� and therefore it corresponds to a PO with T=T�. This
completes the proof of the statements above
concerning the symbolic representation �c��.

To derive relation �5�, let H� denote the set of initial con-
ditions in OR,1 for all the orbits of type �. We associate with
a point �x0 , p0� in H� the sequence �c��= . . . ,ci−1 ,ci , . . . rep-
resenting the corresponding orbit. Obviously, H� is invariant
under the map M±T� and the point M±T��x0 , p0� is associated
with the shifted sequence . . . ,ci−1±y ,ci±y , . . . �y=C��. Thus,
H� is a horseshoe whose dynamics under M±T� is topologi-
cally conjugate to a shift map by ±C� in a space of bi-infinite
binary sequences. It is clear from above that, for any given g,
H� is covered by the set of all the intersections

H̄�c��,g
�V�c���,g

for arbitrary sequences �c��,g and �c���,g. The
number of these intersections is 4gQ� and each of them is a
box of width/length proportional to 	−gT�. Thus, H� is a frac-

tal set whose Hausdorff dimension D̄� is determined by

4gQ�	−D̄�gT� =1. This gives relation �5�.

As a matter of fact, an orbit of type � is represented and
uniquely determined by a sequence �c�� quite generally, i.e.,
also when the TOs Or,r+1 are not parallelograms. This is be-
cause by knowing � and the c code one can easily calculate
the well-known b code �b� �9,10,12� which determines
uniquely an orbit of the SM; see how �b� and �c�� are con-
nected in a simple case of � in Ref. �12�. In general, however,
the symbols c do not assume the values c=0,1 indepen-
dently as above. The topological entropy �3� is then smaller
than �4�. An example of POs of type � for which all the TOs
are parallelograms is shown in Fig. 7; the POs were calcu-
lated using their known formulas in terms of �b� �10�,
together with the connection between �b� and �c��.

IV. DIFFUSION OF ORBITS TRAPPED IN A PERIODIC
SET OF RESONANCES

We now derive exact results concerning the diffusion of
orbits trapped in a set S of resonances given by mw /nw+u,
for w=1, . . . ,W and for all integers u; this set is periodic in
the p direction and we assume, for definiteness and without
loss of generality, that 0��w=mw /nw�1 and �w��w� for
w�w�. The following condition will be imposed on S: For
some integer J�0, the lower turnstile of resonance �W+J
has a parallelogram overlap with the turnstile of resonance
�1; from �2�, this condition holds for K satisfying

K 
 2J + 2�p�W
− p�1

� +
K

	nW − 1
+

K

	n1 − 1
. �6�

Then, obviously, a general resonance �w+u in S has also a
parallelogram TO with any of the �2J+1�W−1 resonances
�=�1+u−J , . . . ,�W+u+J, ���w+u. We shall also assume
that J is chosen as large as possible, i.e., that �W+J+1 and �1
have no TO or that the TO is not a parallelogram. Then,
the type of an orbit trapped in S will have the general form

FIG. 7. Solid lines: Resonances �=1/2 and ��=1/3 for
K=0.65. Dots: POs of type � with basic block
��0�= �1/2�6 , �1/3�8 �P�=0� and l=1; one has T�=36, h�=0.231,

and D̄�=0.588.
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�= . . . , ��w�+u��q� , ��w+u�q , . . ., with bounded �u−u� � J;
�u−u�� may be slightly larger than J if, e.g., the TO of reso-
nances �w�+u� and �w+u is not a parallelogram. We shall,
however, restrict our attention to the ensemble G=G�S ,J� of
orbits featuring only types with �u−u� � �J. Such an orbit
will always “jump� from �w�+u� to �w+u by parallelogram
TO.

Global diffusion on G can be systematically approached
on the basis of PO subensembles of G �15�, GT, with periods
T� dividing T �including T�=T�. From the definition of U�,l in
the previous section, we can write GT=�lT�=TU�,l, where �
are orbit types featured by G. The diffusion coefficient DG
associated with G is then defined as follows:

DG = lim
T→�

1

2T

	
lT�=T

N��,l�l2P�
2

	
lT�=T

N��,l�
, �7�

where the limit should be taken using a proper sequence of
periods T, as illustrated by the example below. Formula �7� is
consistent with the usual definition of a diffusion coefficient,
D=limt→���pt− p0�2�E / �2t�; it is also manifestly invariant un-
der canonical transformations preserving the periodicity of
the map �1� in �x , p� and it is appropriate for a uniformly
hyperbolic system like the SM. As shown below, the value of
DG generally depends on G.

To calculate �7� and to study the diffusion on G, we first
introduce a convenient symbolic dynamics based on the re-
sults of the previous section. If an orbit point �xt , pt� lies in
the principal zone of some resonance, say �w=mw /nw, its
iterate �xt+1 , pt+1� will lie either in �w or in one of the
�2J+1�W−1 resonances �=�1−J , . . . ,�W+J, ���w. In the
first case, �xt , pt� can be either on the right �c=0� or on the
left �c=1� side of x=0. In the second case, the side of x=0
on which �xt , pt� lies is automatically fixed by �: c=0 for
���w and c=1 for ���w. Thus, the symbol sequence �c��

for an orbit in G can be replaced by a sequence
�d�= . . . ,di ,di+1 , . . ., where each symbol di can assume inde-
pendently L= �2J+1�W+1 values d=0,1 ,2 , . . . ,L−1; the
first two values, d=0,1, indicate “staying� in the same reso-
nance while d=2, . . . ,L−1 indicate “jumping� to one of
L−2 resonances.

It is more convenient to divide the L values of d into
2J+1 groups, each associated with a jumping index
j=−J , . . . ,J. The first group, with j=0, consists of W+1 val-
ues d=0,1 ,2 , . . . ,W �corresponding to staying in �w or
jumping to �=�1 , . . . ,�W, ���w�. Each of the other 2J
groups, with j�0, consists of W values �corresponding to
jumping from �w to �1+ j , . . . ,�W+ j�. Then, for a PO in
G�U�,l, represented by a sequence �c��= �d� periodic with
period lC� �see previous section�, one must have

lP� = 	
i=1

lC�

ji, �8�

where ji is the jumping index associated with di.
As an example, we consider the case that all the reso-

nances in S have the same order, nw=n, w=1, . . ,W �then

W��n�, where �n� is the Euler function�. In this case, if
the period of a PO sequence �d� is C= lC�, the actual period
of the PO is necessarily T=nC. The denominator of the
fraction in �7� is just equal to LC. Using �8�, we thus see that

DG = lim
C→�

1

2nCLC 	
j1,. . .,jC=−J

J

�j1 + ¯ + jC�2, �9�

where ji, for each i=1, . . . ,C, assumes W+1 times the value
ji=0 and W times a nonzero value in the sum. It is easy to
see that this sum is equal to

�d2��z�
dz2 +

d��z�
dz

�
z=1

, �10�

where ��z� is the generating function

��z� = �1 + W 	
j=−J

J

zj�C

. �11�

Using �10� with �11� in �9�, we obtain

DG =
J�J + 1��2J + 1�W
6n��2J + 1�W + 1�

. �12�

Formula �12� shows a nontrivial dependence of DG on G
already in this simple case of nw=n for all w. The factor n in
the denominator of �12� represents the attenuation of the dif-
fusion rate as a result of the “horizontal” motion along the
resonances.

As a matter of fact, one can consider ji in this case as a
random variable assuming the value ji=0 with probability
�W+1� /L and a value ji�0, �ji��J, with probability W /L.
The standard deviation �2 of this variable can be easily cal-
culated: �2=2nDG, where DG is given by �12�. It then fol-
lows from the central limit theorem that as C→� the prob-
ability distribution of 	i=1

C ji approaches a Gaussian
distribution with standard deviation C�2. This shows that
one has indeed a rigorous diffusion on G.

The number of POs with periods T�=nC�, where C�
divides C, is simply LC. The topological entropy of G is then

hG = lim
C→�

1

nC
ln�LC� =

1

n
ln�L� . �13�

The initial conditions for the orbits of G form a fractal set
whose Hausdorff dimension can be calculated in the same
way as in �5�:

D̄G =
2hG

ln�	�
=

2 ln�L�
n ln�	�

. �14�

Figure 8 shows a PO approximation of this fractal set for the
trapping in second-order resonances �n=2, W=1� with J=1;
the POs were calculated as explained at the end of Sec. III.

The exact results �12�–�14� are independent of K �and
therefore constant� in the interval KJ�K�KJ+1, where KJ is
the value of K for which the equality holds in �6�. For the
trapping in the first-order resonances �n=W=1�, KJ can be
easily calculated:
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KJ =
4�J + 2� + 2�J2 + 4J + 1

3
− 2. �15�

It follows from �15� that in a strong-chaos �K�1� regime
KJ�2J+2, so that, approximately, K�2J+2 and 	�2J+4.
Using also L=2J+2, this implies that the fractal dimension
�14� is very close to 2 from below, i.e., G is very close to a
set of finite measure in phase space. This is consistent with
the fact that for K�1 most of the phase space is occupied by
the first-order resonances �12�. From �12� we find that for
n=W=1 and K�1 �with J�K /2�,

DG �
K2

24
. �16�

We recall that K2 /24 is the exact value of the global diffu-
sion coefficient for integer K �cat maps� �8,15� and is an
approximate one for all K�1 �15,16�. As one could expect,
relation �16� shows that this value also well approximates
that of �12� for the almost finite-measure ensemble G.

V. SUMMARY AND CONCLUSIONS

In summary, we have derived rigorous results concerning
the quasiregularity and the diffusion of strongly chaotic mo-
tion on resonances of the SM. Due to the exact resonance
partition in the SM �12�, any chaotic orbit is of well-defined
quasiregularity type, specifying the sequence of resonances
visited by the orbit. We have considered chaotic ensembles
of fixed type, involving a finite number R of resonances in
the basic torus 0�x, p�1. Provided the TOs of consecu-
tively visited resonances are all parallelograms, such an en-
semble can be described by a binary symbolic dynamics for
which the values of some symbols are fixed by the type and
the other symbols take the values 0, 1 independently. The
topological entropy and the Hausdorff dimension character-
izing the �fractal� ensemble can then be calculated exactly.

A chaotic ensemble trapped in a periodic set of reso-
nances is characterized by a diffusion coefficient depending
sensitively on the set considered. The coefficients associated
with all such ensembles, generally fractals, give then a much
more complete picture of the influence of quasiregularity on
chaotic diffusion than a single global coefficient. This is al-
ready clearly illustrated by the exact formula �12� in the
simple case that all the resonances have the same order. We
have shown that the trapped ensemble in this case exhibits a
rigorous chaotic diffusion. For first-order resonances, this
diffusion approaches the global one in a strong-chaos re-
gime. Thus, one may view this as a rigorous global-diffusion
result valid for all K
K1, not just for specific �e.g., integer�
values of K as in previous works �8,15�. Our exact results
may be extended to cases of ensembles trapped in sets of
resonances having different orders by using the convenient
symbolic dynamics introduced in Sec. IV.

The quantized SM has attracted much attention recently in
several contexts �17–20�. It would be interesting to investi-
gate the fingerprints of our classical results in the quantum
properties in a semiclassical regime; for example, “scars” of
wave functions on POs exhibiting a clear quasiregularity pat-
tern and a possible relation between dynamical localization
of quasienergy states on a periodic set of resonances and the
diffusion rate of chaotic ensembles trapped in this set.
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